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APPENDIX C: Notes on plasticity theory 

C.1. Introduction 

A typical uniaxial stress-strain curve is shown in Fig. C1. Here the nominal stress is used (load 

divided by original cross-sectional area) and the strain can be either the engineering strain, 

( )0 0/L L Lε = − , where L  is the current specimen length and 0L  the original length, or the 

logarithmic strain defined as 0ln( / ).e L L=  When the strains are small and higher order are 

neglected, either strain can be used since 2 3
0ln( / ) ln(1 ) / 2 / 3 ...e L L ε ε ε ε ε= = + = − + + ≈ . 

  

 

 

 

 

 

 

 

 

Fig. C1. Uniaxial stress - strain diagram for a strain-hardening material in tension with an initial yield stress 

Yσ . Upon unloading after yielding, the path is parallel to the initial elastic phase. In reloading, the same 

path is followed until the new yield stress Yσ ′  is reached. 

Initially and up to the yield stress Yσ , the material behaves in a linear elastic and reversible 

manner. In this phase of linear response, the theory of elasticity is adopted to model the constitutive 

response of the material. After the yield limit Yσ , the material behaves in an inelastic manner with 

plastic deformation. From any point after yielding, unloading does not follow the same path 

demonstrating irreversible deformation. In a certain class of materials (especially metals), 

unloading and reloading is linear and parallel to the initial linear part as shown schematically in 

Fig. C1. 
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Upon loading in tension, various materials behave differently before and after yielding.  Figure 

C2, shows schematics of stress-strain curves for different materials. These curves are 

approximations of real materials’ response especially when the transition from elastic to plastic 

response is not smooth and are often used in stress analysis.  When the transition is smooth as 

shown in Fig. 1C, a phenomenological relation known as Ramberg–Osgood, is established by 

fitting experimental data and used in computations.  

 

 

 

 

 

 

 

 

 

 

 

Fig. C2: Approximations of stress strain curves for: (a) rigid-perfectly plastic, (b) elastic-perfectly plastic, 

(c) rigid-linear hardening, (d) elastic-linear hardening material. 

Modern approaches of stress analysis in the post-yield regime, are based on the incremental 

theories of plasticity. These theories aims at developing phenomenological constructive laws 

relating strains and stresses in nonlinear inelastic continuous media. With reference to a Cartesian 

coordinate system ( 1,2,3)  ix i = , such constitutive relations are expressed in terms of increments 

of strain and stress tensors, ijdε and ijdσ , respectively. A basic assumption is that the strain tensor 

can be decomposed into elastic e
ijdε and plastic p

ijdε components (Fig. C1), 
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e p
ij ij ijd d dε ε ε= + .        (C.1) 

The elastic strain increment tensor is related to the stress increment tensor by means of Hooke's law 

of elasticity through the elastic compliance ijklS  or stiffness ijklC tensor, 

       e e
ij ijkl kl ij ijkl kld S d or d C dε σ σ ε= = .      (C.2) 

Thus, the task of incremental plasticity theory lies in establishing the manner in which the plastic 

strain increment tensor is related to the stress field and history of deformation.  

In this short summary, we review the basic concepts of plasticity theory and give some examples.  

Yield criteria 

The starting point in the theory is the criterion of yield in multiaxial loading conditions. The criteria 

leading to the choice of stress combination that will produce yielding are called yield criteria. 

Several such criterial have been proposed over the years. A number of them were put forward to 

predict strength of brittle materials and were later extended as yield criteria in ductile materials. A 

short description of the well-known yield criteria is given in the next section. The list is not 

exhaustive and other criteria can be found in the literature for isotropic and anisotropic materials.  

Maximum stress theory. Also known as Rankine theory, it assumes that yielding occurs when one 

of the principal stresses in the structure becomes equal to the yield stress in simple tension. For 

example if 1σ  is the maximum principal stress and 3σ is the minimum principal stress, yielding 

takes place when 1 Yσ σ= (tension) and (compression) 3 ,Y cσ σ= . When yielding in tension and 

compression are assumed equal, the criterion becomes,  

 1 Yσ σ=  or  3 Yσ σ= − .       (C.3) 

The theory is not in good agreement with experimental data and is rarely used. 

Maximum Strain Theory. In this theory, also called Saint-Venant Theory, yielding occurs when the 

maximum value of the principal strain equals the values of the yield strain in simple tension or 

compression.  For example if 1ε  is the largest strain in absolute value, yielding occurs when, 

1 1 2 3( ) YE vε σ σ σ σ= − + = ± .       (C.4) 
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This theory also is in poor agreement with experimental data.  

Maximum Strain Energy Theory, or Beltrami’s Energy Theory. Here it is assumed that yielding 

occurs when the total strain energy per unit volume at yield equals the strain energy per unit 

volume at yield in uniaxial tension or compression. In a tensile test, the stain energy per unit 

volume at yield is, 

 𝑊𝑊 = 1
2
𝜎𝜎𝑌𝑌𝜀𝜀𝑌𝑌 = 1

2𝐸𝐸
𝜎𝜎𝑌𝑌2.        (C.5a) 

In a general loading case, the total strain energy per unit volume is, 

 𝑊𝑊 = 1
2𝐸𝐸

[𝜎𝜎12 + 𝜎𝜎22 + 𝜎𝜎32 − 2𝑣𝑣(𝜎𝜎1𝜎𝜎2 + 𝜎𝜎2𝜎𝜎3 + 𝜎𝜎3𝜎𝜎1)] = 1
2𝐸𝐸
𝜎𝜎𝑌𝑌2.  (C.5b) 

Thus, the yield criterion becomes, 

 2 2 2 2
1 2 3 1 2 2 3 3 12 ( ) Yvσ σ σ σ σ σ σ σ σ σ+ + − + + = .    (C.5c) 

The main drawback of this theory is that it predicts yielding under relatively high pressures which 

is not observed experimentally. 

Maximum Shear Theory, or Tresca Criterion. The theory, also called Coulomb Theory, assumes 

that yielding occurs when the maximum shear stress becomes equal to the value of maximum shear 

stress in simple tension. We know that in simple tension, the maximum shear is 1
2 Yσ  and if the 

principal stresses are known 1 2 3σ σ σ> > , the criterion is expressed as, 

 ( )1 3
1 1
2 2 Yσ σ σ− = ± .        (C.6a) 

Note that in simple tension, we have 1 Yσ σ= .This Criterion is in satisfactory agreement with 

experimental data and is used often due to its simplicity, when the principal stresses are known.  

Mohr-Coulomb Criterion. In this theory, it is assumed that while the maximum shear stress is the 

cause of yielding (Tresca Criterion), its action is reduced by a normal stress acting on the plane of 

the shear stress. Further, the theory considers a linear relationship between the shear stress and 

normal stress on the failure plane as an effort to account for internal friction and explain yielding 

in certain materials.  As in the case of Tresca Criterion, the intermediate principal stress 2σ  does 
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not play any role. Thus, yielding occurs when the following condition is met, 

 1 3
,

Y
Y

Y c

σσ σ σ
σ

− =         (C.6b) 

where ,Y cσ  is the yield stress in compression.  When this stress is equal to the yield stress in tension

,Y c Yσ σ= , the criterion reduces to Tresca Criterion defined earlier. This theory is applied to 

geomaterials where some frictional effects appear in yielding. 

Distortion Energy Criterion. This theory also known as Von Mises Yield Criterion, assumes that 

yielding starts when the distortion energy becomes equal to the distortion energy at yield in simple 

tension. It is based on experimental evidence that the volumetric component of the strain energy 

(or hydrostatic stress) does not contribute to plastic deformation.  

Energy analysis shows that the distortion energy per unit volume is given by, 

 2
1 ( )

2
sdW I

G
=         (C.7a) 

where G µ=  is the shear modulus and 2 ( )sI  the second invariant of the deviatoric stress tensor 

which in terms of the principal stresses is, 

 2 2 2
2 1 2 2 3 3 1

1( ) ( ) ( ) ( )
6

sI σ σ σ σ σ σ = − + − + −  .    (C.7b) 

In uniaxial tension at yield we have,  

2
2

1( )
3

s YI σ= .         (C.7c) 

Thus, the criterion based on distortion energy becomes, 

 2 2 2 2
1 2 2 3 3 1( ) ( ) ( ) 2 Yσ σ σ σ σ σ σ − + − + − =   .    (C.7d) 

In terms of the 6 components of stress tensor it is, 

 ( )2 2 2 2 2 2 2
11 22 22 33 33 11 12 23 31( ) ( ) ( ) 6 2 Yσ σ σ σ σ σ σ σ σ σ − + − + − + + + =  . (C.7e) 

Note that, this criterion can be stated in terms of 2 ( )I s : yielding occurs when the second invariant 
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of the deviatoric stress tensor becomes equal to the corresponding one in uniaxial tension. It gives 

satisfactory results and is often used due its simplicity. In simple tension we have 11 1 Yσ σ σ= = . 

The V. Mises criterion is also stated in terms of the octahedral stress because of the relation, 

 

2 2 2 2
2 1 2 2 3 3 1

1/22 2 2
1 2 2 3 3 1

2 1( ) ( ) ( ) ( )
3 9
1 ( ) ( ) ( ) .
3

oct

oct

I sτ σ σ σ σ σ σ

τ σ σ σ σ σ σ

 = = − + − + − 

 = − + − + − 

   (C.7f) 

Thus, yielding takes place when the octahedral shear stress becomes equal to that in uniaxial 

tension, given by, 

 2
3oct Yτ σ= .         (C.7g)  

In a biaxial stress state, relation (C.7d) reduces to, 

2 2 2
1 2 1 2 Yσ σ σ σ σ+ − = .        (C.7h) 

which is an ellipse in the 1 2σ σ− plane as shown in Fig. C3a. 

Fig. C3: V. Mises ellipse in a biaxial stress state with equal yielding in tension and compression. (b) The 

same criterion in traction torsion loading.  

Example 1. An important experiment to carry out multiaxial stress testing in the laboratory is a 

thin tube that is simultaneously subjected to traction, torsion and internal pressure. Suppose that 

this experiment is performed only under tension and torsion.  Express the V. Mises yield condition 

2σ

Yσ

Yσ

Yσ−

Yσ−

12 / Yσ σ

11 / Yσ σ 1

0.57

O

( )a

1σ

( )b
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for this experiment.  

Solution 

The stress state at a point in the tube is 11σ  due to traction and 12σ  due to torsion1. Thus, (C.7e) 

reduces to, 

( )2 2 2
11 122 6 2    Yσ σ σ+ = ⇒       

2 2

11 123 1
Y Y

σ σ
σ σ

   
+ =   

   
. 

The last equation is an ellipse as shown in Fig. C3b. When the stress state is represented by a point 

within the ellipse, the materials is in the linear elastic range. A point in the ellipse signifies yielding 

and any stresses state outside the ellipse is not permitted.  

 

Yield Surface2 

It is clear from the discussion on the preceding section that yield criteria are expressed in terms of 

stresses. For biaxial stress state problems, these criteria are presented as curves3 (Fig. C3).  

In the most general case, the yield criteria will depend on the stress state at a point as given by the 

symmetric Cauchy stress tensor. It is assumed therefore, that for a pristine material under 

multiaxial stresses, the yield criterion is an extension of yielding in uniaxial loading and the 

criterion is expressed as,  

 ( )ijf Kσ = .         (C.8) 

Here f is a so-called the yield function and K is a known parameter that reflects the material.  In 6-

dimensional stress space, relation (C.8) is represented by the yield surface. Any point on that 

surface corresponds to a stress state at which yielding can begin. A point inside the surface 

corresponds to a state in the linear domain and a point outside the surface is not permitted.  

To continue, we adopt two hypotheses: 

1. For an isotropic material, the yield function is represented only in terms of the three principal 

 
1 The stresses can be expressed in terms of the applied torque and axial load using well known approximations form 
structural mechanics. 
2 In the next paragraphs of this summary, the plasticity theory based on the V. Misses yield criterion is discussed. 
3 They can also be a polygon, i.e. the Tresca criterion. 
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stresses, or the three invariants of the stress tensor.  

2. Based on experimental evidence on several materials, the hydrostatic stress does not 

contribute to yielding.  Thus, (C.8) is expressed only in terms of the invariants of the 

deviatoric stress tensor s, 

( )1 1 2 3( ), ( ), ( )s s sf I I I K=        (C.9) 

where ( ) ( 1, 2,3) i iI s i =  are the invariants of the deviatoric stress tensor s. Alternatively, the yield 

function can be expressed in terms of the principal deviatoric stress components ( 1, 2,3)  is i = , 

 ( )
1 1 2 3

2 2 2
2 1 2 3

3 1 2 3

( ) 0
1( )
2

( ) .

s    

s   

s

I s s s

I s s s

I s s s

= + + =

= + +

=

       (C.10) 

or,  

 ( )2 2 3( ), ( )s sf I I K= .        (C.11) 

The well-known V. Mises yield criterion is a specific case of the latter equation,  

 𝑓𝑓3(𝐼𝐼2(𝑠𝑠)) = 𝐼𝐼2(𝑠𝑠) = 𝐽𝐽2 = 1
3
𝜎𝜎𝑌𝑌2 .      (C.12) 

Note that for convenience in the following, the second invariant of the deviatoric stress tensor will 

be indicated by 2J .  

It is useful to study the yield surface in space. Thus, we introduce a coordinate system whose axes 

are the three principal stresses 1 2 3, ,σ σ σ  that defines a stress space, called Westergard Stress Space. 

Every point in this space represents a possible stress state.   

Consider next the straight line ON having equal angles with the three axes, i.e. 

1 2 3cos( , ) cos( , ) cos( , ) 1/ 3ON ON ONσ σ σ= = = (Fig. C4). For any point on this line 

1 2 3σ σ σ= =  and 1 2 3 0s s s= = = .  

Accordingly, any point on this line represents a hydrostatic stress state. Consider next, a plane 

normal to ON whose equation is,  

1 2 3 3σ σ σ ρ+ + = .        (C.13) 
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Here ρ is the distance of the plane from the origin. Note that along this line, the hydrostatic stress 

increases linearly with distance from the origin. The plane, with 0ρ = , passes by the origin and is 

called the  planeπ . We will show now that in the stress space, the V. Mises criterion (C.12) is 

represented by an open-ended cylinder.  

Fig. C4: (a) Westergard Stress Space. ON makes the same angle with the axes. P represents a stress 

state. A stress state at Q on a line parallel to ON has the same st . (b) V.  Mises criterion on  planeπ . 

Consider a stress state 1 2 3, ,σ σ σ represented by a point P (Fig. C4). The components of stress 

vector OP parallel and normal to ON are,  

( )1 2 3 1 2 3
1 1 1 1
3 3 3 3nσ σ σ σ σ σ σ= + + = + +     (C.14) 

( )22 2 2 2 2 2
1 2 2 1 2 3 2

1 2
3

OPs n Jτ σ σ σ σ σ σ σ= − = + + − + + = .   (C.15) 

The shear component can be further expressed as follows, 

 2 2 2 2
1 2 2 22s s s s Jτ = + + = .       (C.16) 

Note that the components of the shear stress component on the  planeπ  are the components of the 

deviatoric stress tensor. It is not difficult to see that for another stress state, represented by point 

Q, on the line parallel to ON, the shear stress component is equal to that of point P and the normal 

component varies according to (C.13). Thus, we can conclude that, for any point on cylinder whose 

axis is ON and radius given by 22s Jτ = , the shear stress is the same. The circle shown in Fig. 

C4b, is the intersection of the cylinder with  planeπ . For the V. Mises criterion (C.12),  

1σ

2σ

3σ

P

N

 O

sτ

nσ

Q




1σ

2σ

3σ

 O

2
3

 Yradius σ

( )a ( )b
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 2
2

1
3 YJ σ=          (C.17) 

and (C.16), the radius of this circle is (Fig. C4b), 

2
3 Yr σ= .         (C.18) 

Subsequent yield surfaces 

Upon loading, a virgin material will yield when the yield criterion is satisfied.  For a perfectly 

plastic material (Fig. C2a, b), the yield stress and yield surface remain the same upon further 

loading. In several material, however, the stress-strain curve rises and thus, the yield stress 

increases upon further loading.  This phenomenon is called strain-hardening, or work hardening 

(Fig. 1C). As a result the yield surface changes upon loading beyond Yσ . To describe this 

phenomenon we need to define a yield function for general loading,  

 ( )ijf Kσ = .         (C.8bis) 

When the equality is met, yielding begins and in the stress space we have the initial yield surface. 

For a strain-hardening material, parameter K takes on a new value and as in the case of the yield 

stress in uniaxial test, if the material is unloaded and reloaded, additional yielding does not occur 

until the new value of K is reached (in the uniaxial test the yield stress increases from Yσ  to Yσ ′ , 

see Fig. 1C).  The foregoing concepts are formalized as follows, 

1. Loading 

 ( ) ( )
, 0   ij

ij ij
ij

f
f K d

σ
σ σ

σ

∂
= >

∂
      (C.19) 

2. Neutral Loading  

( ) ( )
, 0   ij

ij ij
ij

f
f K d

σ
σ σ

σ

∂
= =

∂
      (C.20) 

3. Unloading  

( ) ( )
, 0   ij

ij ij
ij

f
f K d

σ
σ σ

σ

∂
= <

∂
      (C.21) 

These three conditions imply that in loading, the stress increment tends outwards from the yield 
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surface producing plastic deformation. In neutral loading, the stress increment points on a 

tangential direction to the surface and in unloading it points inwards.   

At this point, it is important to define isotropic hardening and the Bauschinger effect. The stress-

strain curve for an isotopic material with identical behaviors in in tension and compression is 

shown in Fig. C5a.  

Fig. C5: (a) tension compression curve of a material with the same tension and compression defining 

isotropic hardening. (b) Definition of kinematic hardening. The yield stresses change in tension and 

compression but the elastic stress ‘distance’ between tension and compression remains the same. 

We notice here that the behavior (post-yield response) is identical in tension and compression.  

During repeated loading and unloading the yield stress increases, due to strain hardening, by the 

same amount in tension and compression. 

This is a so-called isotropic hardening material and for the V. Mises yield criterion, the initial 

cylinder in the stress space expands with hardening while maintaining its shape. In the  planeπ , 

these cylindrical surfaces are concentric circles as shown in Fig. C6. Isotropic hardening is often 

adopted as good first order approximation to model plasticity in certain materials because of its 

simplicity.  

However, experimental results have shown that isotropic hardening is not always satisfied and the 

Yσ

Yσ

Yσ ′

Yσ ′

( )a

Yσ

Yσ

( )b

2 Yσ2 Yσ















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material behavior in compression is not identical to that in tension4. Thus, the yield surfaces do 

not only expand but also change shape during yielding.   

Fig. C6: Schematics of (a) Yield loci of the V. Mises yield surface on the  planeπ  for a strain hardening 

material. (b) Yield loci for a kinematic hardening.  

This phenomenon is attributed to the so-called Bauschinger effect. This effect reduces the yield 

stress in compression if the material is strain hardened in tension, unloaded and reloaded in 

compression as shown schematically in Fig C5b.  To account for the Bauschinger effect, Prager 

has introduced a simplified model called kinematic hardening. In this model the total elastic range 

is maintained constant during loading and the surface translates undeformed in the stress space. In 

most real materials, strain- and kinematic hardening, are manifested and the yield surface changes 

its shape and moves in the stress space.  

Plastic strains 

After yielding, the material deforms in an elastoplastic manner and elastic and plastic strains are 

produced. There are two types of theories to model plastic strains.  The first one encompass the 

so-called incremental or flow theories of plasticity and relate plastic strain increments to current 

stress level. Such theories are based on experimental results showing that plastic strains depend on 

the loading path. Thus, the increments of strains are computed throughout the loading history and 

expressed in terms of the current stress level. To determine the total plastic strains, we integrate 

 
4 The material microstructure changes due to plastic strains in tension that lowers the compressive yield stress. 

1σ

2σ

3σ

 O

1σ

2σ

3σ
 O
•

•
•
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the incremental stress-strain relations over the entire history of loading. 

The second type encompass what are called total or deformation theories of plasticity. Here the 

total strain components are related to the current stress. In the following sections, we review a 

well-known incremental plasticity theory. A brief description of a total deformation theory is given 

at the end of this Appendix.  

Prandtl-Reuss equations5 

It was stated earlier that the total strain tensor can be decomposed in elastic and plastic components 

(relation C.1). While the elastic part follows Hook’s law (C.2), the plastic part is expressed by the 

Prandtl-Reuss equations, 

33 23 3111 22 12

11 22 33 12 23 31

0
p p pp p pd d dd d d d

s s s s s s
ε ε εε ε ε λ= = = = = = ≥     (C.22a) 

In index form they are, 

p
ij ijd s dε λ=          (C.22b) 

Here p
ijdε  are the plastic strain increments, ijs the components of the deviatoric stress tensor and 

dλ  is an non negative parameter that may change with loading. Note also that (C.22) imply, 

11 22 33 0p p pd d dε ε ε+ + =         (C.23)   

Equations (C.22) state that p
ijdε  are proportional to ijs and not to the stress increment. In terms of 

the principal plastic strain increments and principal stresses, relations (C.22a) simplify to, 

 31 2

1 2 3

pp p dd d d
s s s

εε ε λ= = =        (C.24a) 

which easily leads to, 

 2 3 3 11 2

1 2 2 3 3 1

p p p pp p d d d dd d d
s s s s s s

ε ε ε εε ε λ− −−
= = =

− − −
     (C.24b) 

In terms of the stress components, (C22) are,  

 
5 The Prandtl-Reuss theory is one of the earlier one to model plastic strains.  
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11 11 11 22 33

12 12 12

2 1 ( )
3 2

........

........

p

p

d d s d

d d s d

ε λ λ σ σ σ

ε λ λσ

 = = − +  

= =

     (C.25) 

Thus, if dλ  is known, the plastic strain increments can be calculated using (C.22) or (C.25). In 

plasticity, relation (C.24) or (C.25) is known as flow rule6.  

With the flow rule known, the full elastic-plastic stress- strain relations are,  

 

[ ]11 11 11 11 22 33 11 22 33

12 12 12 12 12

1 2 1( ) ( )
3 2

........
1

........

e p

e p

d d d d v d d d
E

vd d d d d
E

ε ε ε σ σ σ λ σ σ σ

ε ε ε σ λσ

 = + = − + + − +  

+
= + = +

 (C.26a) 

or in index form,  

 1
ij ij ij kk ij

v vd d d d s
E E

ε σ δ σ λ+
= − +       (C.26b) 

In summary, (C.26) are called that Prandtl-Reuss equations. When the elastic part is neglected, the 

equations are known as the Lévy-Mises equations.  

Example 2: (1) Express the Prandtl-Reuss equations in terms of the principal stresses, (2) Show 

that the principal axes of the plastic strain increments and principal stresses coincide. 

Solution 

1. From (C.24a) we write, 

1 1 1 2 2 2

3 3 3

1 1; ;
3 3
1
3

      p p
ii ii

p
ii

d s d d d s d d

d s d d

ε λ σ σ λ ε λ σ σ λ

ε λ σ σ λ

   = = − = = −   
   
 = = − 
 

  (a) 

 
6 Other flow rules are found in the literature with various degrees of sophistication.  
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2. Expressing 1 2 1 2 1 2
1 1 ,...
3 3ii iis s σ σ σ σ σ σ   − = − − − = −   

   
   (b) 

it is easy to see that (C.24b) become, 

2 3 3 11 2

1 2 2 3 3 1

p p p pp p d d d dd d dε ε ε εε ε λ
σ σ σ σ σ σ

− −−
= = =

− − −
     (c) 

The last relation shows that the principal directions coincide.  

 

To calculate the strains, parameter dλ  needs to be specified and for this a yield criterion is 

required. This is shown in the next paragraphs. We start with (C.22) and replace the deviatoric 

components ijs with their expressions in terms of ijσ . Subsequently we can show that, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2

11 22 22 33 33 11 12 23 31

2 2 2 2 2 22
11 22 22 33 33 11 12 23 31

6 6 6

6 6 6

p p p p p p p p pd d d d d d d d d

d

ε ε ε ε ε ε ε ε ε

λ σ σ σ σ σ σ σ σ σ

− + − + − + + +

 = − + − + − + + +  

 (C.27) 

Note that the expression in the brackets of the right hand is equal to 29 octτ . We then define the 

following parameter, called octahedral strain, 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2

0 11 22 22 33 33 11 12 23 31
1 6 6 6
9

p p p p p p p p p pd d d d d d d d d dγ ε ε ε ε ε ε ε ε ε = − + − + − + + +  
. 

           (C.28) 

Using the above expressions and relation between octahedral stress octτ and second invariant of 

the deviatoric stress tensor 2J , 2
2

2
3oct Jτ = , we obtain, 

0 0

2

3
2

p p

oct

d dd
J

γ γλ
τ

= = .        (C.29) 

To develop further this model, we define an equivalent stress eσ  and equivalent plastic strain 

increment pdε  as follows, 

( ) ( ) ( ) ( ) ( ) ( )
1/22 2 2 2 2 2

11 22 22 33 33 11 12 23 31
1 6 6 6
2eσ σ σ σ σ σ σ σ σ σ = − + − + − + + +  

 



18/27 
 

2
33
2 octJ τ= =         (C.30) 

( ) ( ) ( ) ( ) ( ) ( )
1/22 2 2 2 2 2

11 22 22 33 33 11 12 23 31
2 6 6 6

3
p p p p p p p p p

pd d d d d d d d d dε ε ε ε ε ε ε ε ε ε = − + − + − + + +  
 

02 pdγ=           (C.31) 

 
Accordingly, dλ  is expressed as, 

3
2

p

e

d
d

ε
λ

σ
= .         (C.32) 

and relations (C.25) become, 

11 11 11 22 33

12 12

1 ( )
2

........

3
2

........

pp

e

pp

e

d
d d s

d
d s

ε
ε λ σ σ σ

σ

ε
ε

σ

 = = − +  

=

     (C.33a) 

or in index form, 

3
2

pp
ij ij

e

d
d s

ε
ε

σ
=         (C.33b) 

It is interesting to notice here that the equivalent stress eσ in (C.30) gives the V. Mises criterion 

and according to (C.6d) yielding begins when,  

e Yσ σ=          (C.34)  

Thus, eσ  is the V. Mises yield function and because it is used in (C.33), the Prandtl-Reuss relations 

imply the V. Mises yield criterion. 

Example 3: Show that the equivalent stress (C.30) can be written as, 

1/2 1/2
2 2 2
1 2 3

3 3 ( )
2 2e ij ijs s s s sσ    = = + +      

      (a)   
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Solution 

Express the deviatoric stress ijs  in terms of ijσ  and carry out the multiplications,  

( )

2

2

3 3 1 1
2 2 3 3

3 1 1 1
2 3 3 9
3 2 1 3 1
2 3 3 2 3

e ij ij ij ij mm ij ij kk

ij ij ij ij kk ij ij mm ij ij kk mm

ij ij ll kk kk mm ij ij kk

s sσ σ δ σ σ δ σ

σ σ δ σ σ δ σ σ δ δ σ σ

σ σ σ σ σ σ σ σ σ

  = = − −  
  

 = − − + 
 
   = − + = −   
   

 

( )

2 2 2 2 2 2
11 22 33 12 23 31

2 2 2 2
11 22 33 11 22 22 33 33 11

2 2 2

2 2 2

ij ij

kk

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

= + + + + +

= + + + + +
 

Thus, 

( )

( ) ( )

2 2 2 2 2 2 2 2 2 2
11 22 33 12 23 31 11 22 33 11 22 22 33 33 11

2 2 2 2 2 2 2 2 2 2
11 22 33 12 23 31 11 22 33 11 22 22 33 33 11

2 22
11 22 22 33 33

3 12 2 2 ( 2 2 2 )
2 3
3 1 3 2 2 2 ( 2 2 2 )
2 3
1
2

e

e

e

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

 = + + + + + − + + + + +  

 = + + + + + − + + + + + 

= − + − + ( )2 2 2 2
11 12 23 316 6 6 .σ σ σ σ − + + +  

The right hand side of (a) is expressed in terms of the principal values and obtained by expanding ij ijs s

and noticing that the shear components are zero, 

( )
1/2 1/2

2 2 2
11 11 22 22 33 33 1 2 3

3 3 ( )
2 2e s s s s s s s s sσ    = + + = + +      

. 

Example 4: Show that the equivalent plastic strain increment (C.31) can be written as, 

 ( ) ( ) ( )( )
1/2 1/2

2 2 2

1 2 3
2 2 .
3 3

p p p p p
p ij ijd d d d d dε ε ε ε ε ε   = = + +      

   

Solution 

We follow the same steps as in the previous example by replacing the plastic strain increments and 

carrying out the calculations, i.e.,  

1/21/22 2 1 1 .
3 3 3 3

p p p p p p
p ij ij ij ij mm ij ij kkd d d d d d dε ε ε ε δ ε ε δ ε     = = − −         
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Since the structure of this relation is identical to the first relation in the previous Example (except 

the coefficient) we follow the same steps. Also, it is interesting to notice that we can write, 

𝑑𝑑𝜀𝜀𝑝𝑝 =
√2
3
��𝑑𝑑𝜀𝜀11

𝑝𝑝 − 𝑑𝑑𝜀𝜀22
𝑝𝑝 �

2
+ �𝑑𝑑𝜀𝜀22

𝑝𝑝 − 𝑑𝑑𝜀𝜀33
𝑝𝑝 �

2
+ �𝑑𝑑𝜀𝜀33

𝑝𝑝 − 𝑑𝑑𝜀𝜀11
𝑝𝑝 �

2
+ 6�𝑑𝑑𝜀𝜀12

𝑝𝑝 �
2

+ 6�𝑑𝑑𝜀𝜀23
𝑝𝑝 �

2

+ 6�𝑑𝑑𝜀𝜀31
𝑝𝑝 �

2
�
1/2

 

which is relation (C.31). 

 

We can distinguish now the two important cases in plasticity, according to (C.33b):  

Perfectly plastic material. Here Yσ does not change (Fig. C2a,b) and thus, we have, 

3
2

pp
ij ij

Y

d
d s

ε
ε

σ
= .        (C.34) 

Work hardening or Strain hardening material. When the material work-hardens, or strain-hardens 

(Fig. C1), the yield stress increases, e Yσ σ> . In such cases, it is necessary to establish a relation 

between pdε and eσ in (C.33). In this plasticity model, such relation is expresses in terms of the 

total plastic work, or equivalent plastic strains. Below, we state these relationships without going 

into the details. 

Work hardening: The work increment per unit volume during deformations is,  

ij ijdW dσ ε=          (C.35a) 

Using (C.1) we can write, 

  ( )
ij ij

e p e p
ijdW d d dW dWσ ε ε= + = +       (C.35b) 

The first part of the work is recovered upon unloading and the second part, dues to the irreversible 

plastic deformation, is not recovered. This latter part is the plastic work per unit volume, 

 
ij

p p
ijdW dσ ε=          (C.35c) 

Taking into account (C.23), the last relation can be expressed in terms of the principal deviatoric 

stresses,  

 1 1 2 2 3 3
p p p pdW s d s d s dε ε ε= + +  .      (C.35c) 
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Without going into the details, the plastic work increment can be expressed in terms of the 

equivalent stress and equivalent plastic strain increment,  

 p
e pdW dσ ε=  .        (C.35c) 

Accordingly, the Prandtl-Reuss relations (C.33b) for a work hardening material are, 

2

3
2

p
p

ij ij
e

dWd sε
σ

=         (C.36) 

It is assumed further that the amount of hardening depends on the total plastic work and is 

independent of the deformation path. 

Therefore, in the yield criterion (C.8), parameter K is a function of the total plastic work changes 

for a work hardening material,  

( ) ( )p
ijf K Wσ =         (C.37) 

where,  

 
ij

p p
ijW dσ ε= ∫         (C.38) 

When then V. Mises or equivalent stress is the yield function we obtain, 

( )p
e K Wσ = .         (C.39) 

Relationship (C.39) is obtained experimentally and used in (C.36) to obtain the plastic strain 

increments.  

Strain hardening: The second approach to model hardening is to use the following equivalent 

plastic strain pε , 

 
ij

p
p dε ε= ∫ .         (C.40) 

Thus, (C.37) is replaced with, 

( ) ( )ij pf Hσ ε=         (C.41) 

and for the V. Mises criterion, we have, 

( )e pHσ ε= .         (C.42) 
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Relationship (C.42) is established with experimental measurements from the material in question 

and the plastic strain increments are computed from (C.33). 

It can be shown that for the V. Mises criterion, both measurements of hardening (work and strain-

hardening) are equivalent. 

General approach to plastic stress-strain relations 

In the previous sections, some aspects of incremental plasticity, based on (C.22), are outlined. It 

is also shown that the theory implies the V. Misses yield function. In this section we briefly present 

a more general formalism to determine stress-strain relations in the plastic range for any yield 

criterion.  

This general approach is due to Drucker. We assume a strain hardening material and expresses, 

the yield function (C.8) differently for the sake of clarity. Thus, we assume that yielding occurs 

when,  

 ( ), 0p
ij ijF σ ε = .        (C.43) 

It is important to keep in mind that unique relations do not exist between stress and strain in the 

plastic range; the strain depends not only on the final state of stress, but also on the loading history. 

Therefore, in developing theories of plasticity, the stress-strain relations of elasticity must be 

replaced by relations between increments of stress and strain (incremental or flow theory of 

plasticity).  

Associated flow rule. The associated flow rule of classical plasticity is based on the Drucker's 

postulate. Consider an element of a strain-hardening material with an initial state of stress 0
ijσ . If an 

additional stress increment ijdσ  is slowly applied on it and then removed, it is postulated that: 

1. during loading, the additional stresses do positive work, 

2. during the complete cycle of additional loading and unloading the additional stresses do 

positive work if plastic strains are produced. For a strain-hardening material, the work is zero 

only when the changes are purely elastic. 

From the foregoing it follows that, 

0p
ij ijd dσ ε ≥          (C.44a) 
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and, 

( )0 0p
ij ij ijdσ σ ε− ≥ .        (C.44b) 

Because of (C.44b), the inequality F ≤ 0 defines a convex region in stress space and the plastic 

strain increment vector p
ijdε  is normal to the loading surface F = 0. Accordingly, the incremental 

flow rule is, 

, 0   p
ij

ij

Fd d dε λ λ
σ
∂

= ≥
∂

.       (C.45a) 

When F is the yield function we call (C.45a) the associated flow rule. For several material and 

especially metals, an associated flow rule works very well. Note that / ijF σ∂ ∂ is the gradient of F 

and thus, the plastic strain increment vector is normal to the yield surface.  

If we use another function we have the non-associated flow rule. Here a function ( ), p
ij ijg σ ε  is 

defined so that,  

, 0   p
ij

ij

gd d dε λ λ
σ
∂

= ≥
∂

.       (C.45b) 

Non-associated flow rule does not satisfy Drucker’s postulate and have limited applications. 

After yielding, subsequent loading surfaces pas through the stress point, representing the stress state 

in the stress space and (C.43) is always true. Thus, during loading we have, 

0p
ij mnp

ij mn

F FdF d dσ ε
σ ε
∂ ∂

= + =
∂ ∂

.      (C.46) 

This last relation is the so-called consistency condition. Next, we introduce (C.45a) in (C.46) and 

solve for dλ , 

 
( )

( )( )
( )

( )( )
/ /

/ / / /
ij ij kl kl

p p
mn mn mn mn

F d F d
d

F F F F

σ σ σ σ
λ

ε σ ε σ

∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
   (C.47) 

Introducing (C.47) in (C.45a) we obtain following complete increment plastic-strain stress relations, 
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( )( )
( )( )

/ /

/ /
ij klp

ij klp
mn mn

F F
d d

F F

σ σ
ε σ

ε σ

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂
      (C.48) 

The last equation implies that the plastic strain increments are proportional to the stress increments 

and (C.48) can be written as, 

p
ij ijkl kld H dε σ=         (C.49a) 

with,  

( )( )
( )( )

/ /

/ /
ij kl

ijkl p
mn mn

F F
H

F F

σ σ

ε σ

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂
      (C.49b) 

Hardening rule. It was stated earlier that if loading is continued after the yield point and the material 

strain-hardens, the loading surface can changes its size, shape, and location in the stress space. The 

rule which accounts for such a modification of the loading surface during plastic flow is called 

hardening rule. 

Isotropic hardening. The most widely used hardening rule assumes a uniform expansion of the 

initial yield surface as discussed earlier and shown in Fig. 5Ca. It is called isotropic hardening, 

because it assumes negligible anisotropy induced from plastic strains. This is the simplest possible 

hypothesis and widely used in classical plasticity for certain materials. The loading function 

depends on a single parameter H and may be written as, 

( ) ( ) ( )2 3, , , 0p
ij ij ijF H f J J Hσ σ ε= − ≤ .     (C.50) 

Here ( )2 3,F J J is a function of stresses only (i.e. loading function) and ( ), p
ij ijH σ ε is the hardening 

function. It is clear that for the V. Mises criterion, we have, 

( ) ( )1, , 0
2

p
ij ij ij ij ijF H s s Hσ σ ε= − ≤ .      (C.51) 

As stated earlier there are two propositions for the function ( ), p
ij ijH σ ε . The first one is based on 

the plastic work and the other on the plastic strains accumulated in the material, i.e. 

 p p
ij ijW dσ ε= ∫         (C.52) 



25/27 
 

and,  

( )
1/22

3
p p p

ij ij ijH d dε ε ε =   ∫ .       (C.53) 

Equation (C.52), represents the plastic work done during deformation and (C.53) denotes the so-

called "effective" or "equivalent" strain. Both integrals are taken over the strain path from some 

initial state. (Note that, (C.23) is implied in the plastic strain increments). The equivalent strain 

increment in (C.53) integrated over the strain path, provides a good measure of plastic distortions. 

When the hardening theory is formulated in terms of (C.52) the material is said to be work-hardenig. 

When the hardening theory is formulated in terms of (C.53) the material is said to be strain-

hardening. As mentioned earlier, for the V. Mises plasticity the formulations of work-hardening 

and strain-hardening are equivalent. However, in general they give different result. 

If F and H are both non-decreasing functions of their arguments, the loading surface will expand 

in the process of plastic deformation. On the other hand, if F and H are both decreasing functions, 

the material is said to be strain-softening. In this case the loading surface decreases in size.  

Example 5: Show that  

2
pq

pq

J s
σ
∂

=
∂    

( )
( )

1/2

1/2 , 0    ijmn mn
mn mn

ij mn mn

ss s
s s

s sσ
∂

= >
∂

 

where 2
1
2 ij ijJ s s=  is the second invariant of the deviatoric stress tensor with components ijs . 

Solution 
 

 

2

2

1 1
2 3

1 1 1
3 3 3

.

ij ij ij
ij ij ij ij ij mm ij

pq pq pq pq pq

ip jq ij mp mq ij ij ip jq ij ij mp mq pq ii pq

pq
pq

s s sJ s s s s

s s s s s

J s

σ δ σ
σ σ σ σ σ

δ δ δ δ δ δ δ δ δ δ δ

σ

 ∂ ∂ ∂∂ ∂  = + = = −    ∂ ∂ ∂ ∂ ∂   
 = − = − = − 
 
∂

⇒ =
∂
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( )
( ) ( )

( ) ( )

1/2

1/2 1/2

1/2 1/2

1 1 1
2

.

mn mn mn mn mn
mn mn mn

ij ij ij ijmn mn mn mn

mi nj mn ij

mn mn mn mn

s s s s ss s s
s s s s

s s

s s s s

σ σ σ σ

δ δ

   ∂ ∂ ∂ ∂
= + =      ∂ ∂ ∂ ∂   

= =

 

 
Example 6: The associated flow rule in plasticity is when the function F in (C.45a) is the yield 

function. Show that if F is the V. Mises yield function, the associated flow rule gives the Prandtl - 

Reuss equations for the incremental plastic strains. 

Solution 

Consider the function (C.51) for a strain hardening material (C.53), 

( ) ( )1,
2

p
ij ij ij ijF H s s Hσ ε= −  

Taking into account the results of the last example the flow rule (C.45a) becomes, 

 
( )1

2
pq pqp

ij ij
ij ij

s sFd d d s dε λ λ λ
σ σ

∂∂
= = =

∂ ∂
 

which is (C.22b). Thus, the Prandtl - Reuss equations imply the V Misses yield criterion. 

 
Deformation theories of plasticity 

So far we discussed a well-known incremental or flow theory of plasticity which relates the 

plastic strain increments to the current state of stress (C.33) by, 

3
2

pp
ij ij

e

d
d s

ε
ε

σ
=         (C.33bis) 

To obtain the total plastic strains, we need to integrate these equations over the entire loading 

history.  

Hencky in 1924, proposed relations between total plastic strains and current stress state. Thus, 

instead of (C.33), we have, 

3
2

pp
ij ij

e

s
ε

ε
σ

=          (C.54) 
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In this theory, the strains are functions of the current stress state and independent of the loading 

history. Theories that model total plastic strains in this manner, are called total or deformation 

theories as opposed to the incremental or flow theories of plasticity. 

It is evident that deformation theories are simpler than the incremental theories. However, they do 

not account for the load-path dependency of plastic strains. Thus, when the stresses are not 

increased continuously, (C.54) do to give accurate results. This situation appears in unloading-

reloading: assume that after yielding, a specimen is unloaded, partially or completely and reloaded 

to a state of stress that does not produce yielding. In such a case, the plastic strains do not change 

but (C.54) indicate different values of plastic strains because the stresses have changed. This is not 

realistic because the plastic strains have not changed.  

Nevertheless, the two types of theories give the same results for the case of proportional loading:
0

ij ijσ κσ= , where 0
ijσ  is a reference stress state and κ  a  constant. That is, if all stresses are 

increased proportionally, the incremental theory, reduces to the deformation theory. This is not 

difficult to verify because for 0
ij ijs sκ=  , 0

e eσ κσ= , (C.33) results in, 

0
0

3
2

pp
ij ij

e

d
d s

ε
ε

σ
=         (C.55a) 

which upon integration gives, 

0

0

3 3
2 2

ij ijp
ij p p

e e

s s
ε ε ε

σ σ
= =        (C.55b) 
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